_
Ω
-7
_
_
α
N
0
Ω
+
J
٥
≥
≥
≥
`
\sim
Ω
Ξ
Ξ
4

STUDY MODULE DESCRIPTION FORM			
Name of the module/subject Diploma project		nde 10325341010323898	
Field of study	Profile of study (general academic, practical)	Year /Semester	
Electrical Engineering	(brak)	2/4	
Elective path/specialty	Subject offered in:	Course (compulsory, elective)	
Electrical Systems in Mechatronics	Polish	obligatory	
Cycle of study:	Form of study (full-time,part-time)		
Second-cycle studies part-time		ne	
No. of hours		No. of credits	
Lecture: - Classes: - Laboratory: -	Project/seminars: 9	1	
Status of the course in the study program (Basic, major, other)	(university-wide, from another field)	
(brak)	(bı	ak)	
Education areas and fields of science and art		ECTS distribution (number and %)	
technical sciences		1 100%	
Technical sciences		1 100%	

Responsible for subject / lecturer:

Ph.D. Mariusz Barański email: mariusz.baranski@put.poznan.pl tel. 61 665 2636 Electrical Piotrowo 3A Str., 60-965 Poznań

Prerequisites in terms of knowledge, skills and social competencies:

1	Knowledge	Knowledges of electrical engineering, electrical machinery, electrical metrology, electrical circuit theory, power controls, power electronics, and operating system support.	
		Fundamentals of construction and design of electrical machines.	
		Knowledges of computer science and numerical methods.	
		Knowledges from the construction, analysis and synthesis of electromechanical transducers and measurement methods used in mechatronics.	
2	Skills	Fundamentals of construction and operation of electrical systems and mechatronics with the use of tools.	
3	Social competencies	Student is aware of the need to broaden their competence, willingness to work together as a team	

Assumptions and objectives of the course:

Acquiring modern methods of design, testing and analysis of mechatronics and actuators electromagnetic and electromechanical devices. The acquisition of skills in computing package selected.

Study outcomes and reference to the educational results for a field of study

Knowledge:

- 1. Student has an extended knowledge of advanced numerical methods used to solve complex technical problems in electrical engineering [K_W02 ++]
- 2. Student has knowledge of the development trends and the most important new developments in the field of electrical engineering and to a lesser extent in electronics, information technology and power energy [K_W04 ++]
- 3. Student has knowledge about the formulation of equations describing of simple propulsion systems, application of the principles of identification, using the software to analyze the results of computer simulations, and has expertise in designing simple drive systems [K_W10+]

Skills:

- 1. Student can obtain information from literature, databases and other sources, it can integrate the information, make their interpretation and critical evaluation, as well as draw conclusions and formulate and fully justify opinions [K_U01 ++]
- 2. Student is able to work independently and in a team, it is able to assess the time-consuming task, it can lead a small team to ensure execution of tasks in a given period $-[K_U02++]$
- 3. Student is able prepare and give a presentation on the implementation of the project or research task, and lead a discussion about the presentation shown $-[K_U04 +]$

Faculty of Electrical Engineering

Social competencies:

- 1. Student is able think and act in a creative and enterprising [K_K01++]
- 2. Student understands the need for the formulation and communication of information and opinions on the developments in the field of electrical engineering and other aspects of the electrical engineer, shall endeavor to provide such information in a manner commonly opinions clear. [K_K02+]

Assessment methods of study outcomes

Project lectures

? Evaluation based on the current progress of the projects and thesis.

Get extra points for the activity in the classroom, and in particular for:

? propose to discuss further aspects of the subject;

? the effectiveness of the application of the knowledge gained during solving the given problem.

Course description

Simulation of operation of electrical machines and DC permanent magnet machines in Matlab. Using Maxwell to analyze of magnetic field in the selected systems with magnetic field. Using LabVIEW to create virtual instruments supporting electromagnetic and thermal measurements of electromechanical transducers. Measuring systems for the study of phenomena in transformers. Legislation allowing for the operation of power systems (Polish Standard, EU directives). Methods for measuring force, mechanical stress, torque, moment of inertia, speed and slip in electrical machines.

Basic bibliography:

- 1. 1. AC micro-machinery, Simst J., Clarendon Press, New York, 1994
- 2. 2. Mikromaszyny elektryczne, Sochocki R., Ofic. Wyd. PW, Warszawa, 1996
- 3. 3. Silniki krokowe, Wróbel T., WNT, Warszawa, 1993
- 4. 4. Projektowanie maszyn elektrycznych prądu przemiennego, Dąbrowski M., WNT, Warszawa, 1994
- 5. 5. Techniki komputerowe CAx w inżynierii produkcji, Chlebus E., WNT, Warszawa, 2000
- 6. 6. LabVIEW w praktyce, Chruściel M., Wydawnictwo BTC, Legionowo, 2008
- 7. 7. Environment LabVIEW? w eksperymencie wspomaganym komputerowo, Tłaczała W., WNT, Warszawa, 2002
- 8. 8. Napęd elektryczny robotów, Wyd.2, Kaczmarek T., Wyd. Politechniki Poznańskiej, Poznań, 1998
- 9. 9. Układy napędowe z silnikami synchronicznymi , Kaczmarek T., Zawirski K., Wyd. PP, Poznań, 2000
- 10. 10. Metody Numeryczne w Turbo Pascalu, B. Baron, Wyd. Helion, Gliwice, 1995
- 11. 11. MATLAB i Simulink, B. Mrozek, Z. Mrozek, Helion, Gliwice, 2004
- 12. 12. Numerical Analysis, R. Burden, J.D. Faires, PWS Publishers, Prindle, Weber&Schmidt, 1985
- 13. 13. Analysis of Electric Machinery, P. Krauze, McGraw Hill Book Company, New York, 1986
- 14. 14. Programowanie w Matlabie dla elektryków, M. Sobierajski, M. Łabuzek, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, 2005
- 15. 15. Podręczniki, monografie i artykuły podane przez kierujących pracami dyplomowymi.

Additional bibliography:

- 1. 1. Handbook of small electric motors, Yeadon W.H., Yeadon A.W., Mc Graw Hill, 2001
- 2. 2. Dokumentacja systemu AUTOCAD
- 3. 3. Automatyka napędu przekształtnikowego, Tunia H., Kaźmierkowski M.P., PWN, Warszawa, 1988
- 4. 4. Control of Electrical Drives, Leonhard W., Springer-Verlag, Berlin-Heidelberg-NewYork-Tokyo, 1985
- 5. 5. Turbo Pascal i Borland C++. Przykłady. Wydanie II, Autor: Kazimierz Jakubczyk, Data wydania: 2006/04, Stron: 376, Zawiera CD-ROM
- 6. 6. LabVIEW Graphical Programming, Jennings Richard, Johnson Gary W., McGraw-Hill Professional Publishing, 2006

Result of average student's workload

Activity	Time (working hours)
Participation in project activities	9
2. Participation in consultation	12
3. Participation in the exam	2
Participation in the thesis	15

Student's workload

Source of workload	hours	ECTS
Total workload	38	1

http://www.put.poznan.pl/

Contact hours	30	1
Practical activities	30	1